Rochester Model Rails

Dedicated to Quality Model Railroading

VOL. 5, NO.40 ROCHESTER, N.Y. APRIL 2006

Modeling an Interlocking Panel - Part III by Bill Carr .. 2

The Care and Feeding of the Tortoise by Ray Howard ... 7

Photo Gallery - The Rochester Model RR Club by Pete Darling .. 9

Track Car Operator Training by Harold Russell ... 10

Editing Model Railroad Digital Images – Part III by Fred Cupp .. 12

Doctor Duck - Alan Asks About DCC - The NCE Power Pro System .. 15

Train Events – 2006 Calendar...17

A fall scene from the Rochester Model Railroad Club layout, Rochester, NY.

PDF created with pdfFactory trial version www.pdffactory.com
Modeling an Interlocking Panel - (Selkirk Tower) - Part III

by Bill Carr

Selkirk Tower

In Part I & II of Modeling an Interlocking Panel, I discussed modeling a prototypical Interlocking Plant based upon the 1950's Selkirk Tower, located at CP-SK, along the Selkirk Branch, and at the East End of Selkirk Yard, 10 miles south of Albany, NY. A photo of this tower appears in the 2005 summer issue of Classic Trains. My intention was to depict a typical electronic interlocking plant and the operations methods required of the day in executing complex train movements in and around this very busy Northeastern freight yard. The result was a 2 foot x 4 foot panel controlling over 30 turnouts, 62 detected blocks, and 34 signal heads by utilizing a computer interface and electronic controls from the C/MRI series originally authored by Bruce Chubb in the 1980's. This interface mimics the electronic, electromechanical, and mechanical interlocking controls found in U.S. railroad towers, many of which are abandoned or demolished today, including the tower at Selkirk, NY.

Part III will include brief descriptions of connecting the railroad to the computer interface, the basic flow of control utilized within the interlocking logic, the train table modules constructed for this project, and the use of automated DCC control.

The Block

The concept of interlocking logic is based upon a block. A block is a subjectively determined stretch of track work that prevents collisions, enhances safety of operation, and increases the flow of traffic. A block might, or might not contain a switch, as well as related traffic flow signaling. Below are examples of blocks used throughout the modeling construction of Selkirk Interlocking Plant.

I first chose each of the 32 turnouts to become a block. This type of block starts from the clearance of the points to the edge of the fouling point on the main and divergent rails. Each turnout in any crossover becomes an individual block. For
the diamond at CP-SK, there are 3 parallel tracks crossing a single track. Two
signal bridges protect the parallel tracks, whereas two single-headed mast
signals protect the single track forming the three diamonds. The diamond,
therefore, contains 4 blocks.

Next, sections of track work between these various points become blocks. For
control purposes, I also chose to include a stretch of track work facing each
entrance signal mast as a block to be detected. I refer to these blocks as
entrance/exit blocks. Since the interlock contains three interchange track
sections, I chose to make the single diamond crossing track and the
southeastern quadrant interchange track electrically separate reverse loops
which as also block-detected. In total, there are 62 blocks occupancy-detected
using the latest Bruce Chubb DCC optimized circuit – DCCOD.

Each turnout reports back the respective position as either placed in the “Normal”
or “Reverse” position. Having 32 switch motors, this would mean 64 inputs of
position to report. However, with 10 crossovers within the interlocking plant, I
wired the reverse position contacts for each pair in series, reducing the number
of inputs required in the cabling and computer interface as well as providing
better insurance that the crossover is safe to traverse.

Signals are placed at the entrance blocks and diamond crossings. Each head is
a tri-lead, bi-color LED searchlight style signal head. Yellow is achieved by
providing voltage and current across two of the three leads, with the third
acting as ground. Flashing is achieved by turning the signal head on and off every three to four
program loops. Parameter

files read by the computer program allow alteration of
the signal aspects before any operating session. During one session, a signal
aspect might display Flashing Green over RED, but on the next session, it might
display RED over YELLOW.

Railroad and Panel Connections

Regarding the trackside output interface, in order to control
turnouts and signals, circuits are employed which allow a
control line to be brought to ground state by the computer
interface. Two such lines are required for Turnouts for
controlling the individual Capacitive Discharge Circuits, one
per turnout. Signal heads are also controlled by a circuit
that allows the two control lines for each head to be brought to ground, one for
GREEN, one for RED, and both for YELLOW.
Input to the computer interface is achieved by dropping an input line to ground. In the case of turnout positions, the center contact on a switch motor is grounded; the other two lines are connected to the computer interface. For a lock to be detected, the occupancy sensing circuit must drop its output line to ground, which is connected to an input line on the computer interface.

In the case of my Selkirk Tower Interlocking Plant, a set of computer interface cards called a SUSIC node, were placed upon a roll-around cart under the train tables. AMP-Pluggable 25pair telephone cabling connects the various under-table mounted circuitry to these computer interface cards.

Interlocking Panel controls, such as push buttons, levers, and LEDs are connected directly to the computer interface without special circuitry. Some modeled panels include speakers to mimic the “codes” being sent to, and received from, the railroad trackside components in the form of “clicking sounds. A second SUSIC Node connects these various components to the computer interface. All nodes are tied together in a serial daisy chain communications cable back to the computer.

Modular Railroad Tables

Selkirk Interlocking Plant is constructed on three main 2foot x 8foot modular tables. Each table is of basic 1x4 pine construction with multiple cross members supporting a layer of ½ inch homasote. I constructed two appendages to represent the River Line and the Albany Secondary track work. On top of the homasote is cork roadbed and track work. RIX Twincoil switch motors power each turnout. Sunrise dual head signals are used on Bachmann signal bridges and TOMOR dual head signal masts protect each entrance block. The signal masts and bridges contain pluggable harnesses to facilitate transportation between train shows. All power connections between tables are MOLEX 9 or 12 pin connectors with 14ga stranded wiring. Most control lines are 18-24 gauge wire terminating at an AMP plug. All power and control line cabling terminates at a “POWER” cart under the railroad that supports the Laptop computer, a C/MRI node, NCE DCC system, and power supplies.
Computer Interlocking Logic

The basic flow of a C/MRI type system begins with the reading of turnout positions, block occupancy, and panel switch or lever positions. This information is then stored within the computer application. Using these various inputs, the application works through the custom-written decision-tree logic, constructs a set of output requests (such as throw a switch or turn on a signal head), then stores this information within the application, and, finally, sends these instructions back to the computer interface via the C/MRI. The following is a brief list of sequences performed iteratively multiple times per second:

1. Read turnout positions
2. Read block occupancy
3. Read traffic flow levers, route selection rotaries, and code buttons
4. Read turnout lever positions and code buttons
5. Construct diamond signal control LED outputs
6. Read routing information
7. Lock Route if all elements properly positioned such as switches, blocks, signals, levers
8. Set Route Timer
9. Set Entrance / Exit signal control outputs
10. Output Signal Control
11. Output Turnout Control
12. Output Panel LED displays
13. Return to step 1

Automated Train Control

In order to demonstrate the use of the Selkirk Tower at train shows, I incorporated the binary computer-generated command codes for NCE’s DCC system into the overall application. When the tower operator selects a route, and the application locks this route, if an engine is sitting at the entrance block, the computer sends the necessary DCC commands to the engine to traverse the interlock. Upon arrival at the exit block, the computer program idles the engine, sets the direction for the reverse movement, and leaves the engine sitting at the “exit” (now entrance) block for the next time a route is established across the interlock. This process frees up the tower operator to demonstrate the Interlocking panel without too much worry about having to also control the engine movements across the interlock. When the train table modules are connected to my large SELKIRK Yard modular project, this later feature is simply
deactivated, allowing engineers to run full trains across the interlock obeying the signals as they proceed.

Summary
This project was a rewarding adventure combining my electronic, computer programming, and model railroading skills into a single concept to best depict a prototype operations at a complex interlocking plant. For those interested parties requesting more detailed information, please contact me via the Tuesday Night Gang or the publisher of this newsletter, Dick Senges. More detailed information on CP-SK Selkirk Tower project will be available in the soon-to-be-published C/MRI Applications Handbook Version 3 in the chapter covering interlocking plant examples. This book is being produced by Bruce Chubb, the original author and designer of the Computer / Model Railroad Interface (C/MRI). Photos of this project can also be found on the Yahoo Users group site: CMRI_USERS under the PHOTOS section in folder CP-SK.

This project will be on display, running in demo mode with panel and train table modules, beginning with the March, 2006 R.I.T. Train show. The engines, representing trains, will traverse the train tables back and forth from entrance to exit blocks, automatically controlled via the computer interface logic, while Selkirk Tower operators perform the duties of setting up and locking various routes. As the trains (engines) proceed across the interlock, block occupancy and signal repeaters will be displayed upon the track diagram of the Interlocking Tower Panel.
The Care and Feeding of the *Tortoise*

(Aka - wiring and installation of the *Tortoise* Switch Machine)

by Ray Howard

The *Tortoise* Switch Machine by Circuitron is a well-built and easy to install product. I have never heard of one failing and after installing a few on my layout, I will use nothing else. This article is about how I install and use the *Tortoise* on my layout. Understand there are many perfectly good ways to install and wire this machine depending on your individual requirements.

I first fasten the *Tortoise* to a small piece of luan plywood. The one pictured is mounted on a piece of scrap wainscoting. Several people I know mount the *Tortoise* on PC Board before installing it on the layout. I then pre-wire each of the contacts on the *Tortoise* to a terminal strip, as I do not like to solder over my head looking up at the work. Contacts #1 and #8 are the feeds to the DC power source. (You will need to use a DPDT toggle switch to be able to reverse the direction of the current to the tortoise.) The tortoise has two built in SPDT contact switches that can be used to power the frog of the turnout or to run signals on the layout or other effects. Since I model the year 1925 and so do not have lighted signals and use DCC, I use both sets together to power the frog. The contacts are rated at 2 amps and since my DCC power is 5 amps to the track, it builds some redundancy into the system in case of shorts at the frog. To tie the contacts together, they are wired as follows: #4 and #5 are wired together. This is the feed to the frog. #2 and #6 are wired together as are #3 and #7. This makes the polarity the same from both sets of contacts. Note: label things! It makes it much easier under the layout when you are installing them.

I power the *Tortoise* using a 16v 3amp DC power source. Since this is more than the rating of the tortoise, I wire them in series when I have two that are always thrown together (such as a crossover). For single units, I wire a resistor in series with it to lower current draw to the unit. For most applications, a 9v DC wall wart type converter rated for 500 mA will power several machines with power to spare. Although the *Tortoise* is rated for 12v, they seem to operate best at 9 volts.
To install the Tortoise machine under the layout, drill a 1/2” hole directly under the hole in the throwbar of the turnout (Measure twice, drill once). Install the turnout on the layout making sure the hole is centered under the switch throwbar. At this point, I use folded heavy paper to firmly hold the switch points in the center between the stock rails. Pre-drill 4 holes, one at each corner of the mounting board for fastening the assembly to the layout base, then carefully place the tortoise assembly in place under the layout making sure the throwbar on the tortoise moves in the same direction of travel as the points of the turnout. (It helps to have the Tortoise movement centered or at the halfway point also.) Then tighten one of the screws to hold the assembly in place. Use a “screw starter” or a small awl to start the holes for the screws. At this point, I attach the feeds that go to the DPDT switch to operate the tortoise. Remove the folded paper so the switch points can move again. Then, take it out for a test drive! Check to make sure the points are firmly held in place when the turnout is in each position. Make any final adjustments to the position of the tortoise under the layout, and put in the other screws to hold it firmly in place. If the points move backwards from the way you want, you can either reverse the wires #1 and #8 at the terminal block or just turn the DPDT toggle the other way around.

The final step is to attach the wiring to whatever you are going to power with the internal toggles of the tortoise. I bring DCC power from the track or from my buss network to the terminal strip (#2 - #6 and #3 and #7) then connect the feed (#4 and #5) to the frog. Fire up a loco and check out the turnout. You have a 70% chance that the loco will short out on the frog. (I don’t know why, it just works out that way.) **Don’t panic; don’t call 911** just reverse the power feeds from the track or the buss. Problem solved.

Some hints that may help. 1. Hex head screws and a hex nut driver are much easier to use while working over your head under the layout. 2. If you recess your toggle switches into the fascia around your layout, they won’t catch on clothing when you walk by. 3. The Tortoise can be mounted on the point side or the frog side of the turnout equally well. I have also used them with a specially made remote wiring set up to throw the switch points when I could not place them directly under the turnout. 4. Spade lugs crimped and soldered (I like good power connections) onto the wires make them easy to connect to the terminal strip.
Photo Gallery

Scenes from the Rochester Model Railroad Club, Rochester, NY. They will be holding their annual Open House and Sale on Saturday March 11 and Sunday March 12. Location: 150 South Clinton Avenue in the basement of the First Universalist Church. Hours: Saturday 10:00am – 5:00pm and Sunday 1:00pm – 5:00pm. The Flea Market is Saturday only. Admission: $3.00 for adults, $2.00 ages 6 – 12, under 6 free with adult. Information: Tom McColloch 585-872-6106.

Digital images by Pete Darling.
2006 TRACK CAR OPERATOR TRAINING

Training for train enthusiasts who wish to be Track Car Operators at our local railroad museums will commence in March 25 and continue through May 20. The schedule on the following page shows the exact dates, times, the type of training offered. This training is required for new persons as well as experienced operators. All modelers and rail enthusiasts are welcome to share in this rewarding, fun, summertime experience. All operators should be members of either the New York Museum of Transportation or the Rochester Chapter of the National Railway Historical Society.

Experienced Operators

Training will consist of a one-hour classroom session plus a half-day ‘hands-on’ session. There are several dates from which you can choose your classroom training.

This year we are attempting to make the ‘hands-on’ training more comprehensive requiring several hours. This training will consist of a minimum of at least one single direction trip with each of two track cars. To even out the attendance we have broken the training segments (depending on the first letter of your last name) into what we hope are equal attendance portions. If for some reason, you cannot attend your designated ‘hands-on’ time; call Harold Russell after March 12th at 427-9159 or E-mail at haroldrussell@juno.com.

New Operators

Classroom training dates for new operators will be same as the experienced personnel. These are held in the Gallery at the New York Museum of Transportation at 6393 East River Road. Entrance is through the office door at the southwest corner of the building. No appointment is necessary for the classroom sessions.

The ‘hands-on’ training for you will be more extensive and separate from than that of the experienced operators. It will consist of the preparation, start up and shut down procedures for each of two track cars plus a minimum of two hours of operation with each.

To avoid uneven attendance, please make an appointment for your ‘hands-on’ training. Please refer to the schedule for the available dates. To make your appointment or if you have questions, contact call Harold Russell after March 12th at 427-9159 or E-mail at haroldrussell@juno.com.
Track Car Training Schedule for 2006

<table>
<thead>
<tr>
<th>DATE</th>
<th>TYPE</th>
<th>OPERATORS</th>
<th>TIME</th>
<th>LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 25, 2006</td>
<td>Classroom</td>
<td>Experienced and New</td>
<td>9 to 10 AM</td>
<td>NYMT*</td>
</tr>
<tr>
<td>April 1, 2006</td>
<td>Classroom</td>
<td>Experienced and New</td>
<td>9 to 10 AM</td>
<td>NYMT</td>
</tr>
<tr>
<td>April 8, 2006</td>
<td>Classroom</td>
<td>Experienced and New</td>
<td>9 to 10 AM</td>
<td>NYMT</td>
</tr>
<tr>
<td>April 22, 2006</td>
<td>Classroom</td>
<td>Experienced and New</td>
<td>9 to 10 AM</td>
<td>NYMT</td>
</tr>
<tr>
<td></td>
<td>Hands-on</td>
<td>Experienced A thru H</td>
<td>9 to 12 AM</td>
<td>NYMT</td>
</tr>
<tr>
<td></td>
<td>Hands-on</td>
<td>Experienced I thru M</td>
<td>1 to 4 PM</td>
<td>NYMT</td>
</tr>
<tr>
<td>April 29, 2006</td>
<td>Hands-on</td>
<td>Experienced N thru S</td>
<td>9 to 12 AM</td>
<td>NYMT</td>
</tr>
<tr>
<td></td>
<td>Hands-on</td>
<td>Experienced T thru Z</td>
<td>1 to 4 PM</td>
<td>NYMT</td>
</tr>
<tr>
<td>May 6, 2006</td>
<td>Hands-on</td>
<td>New</td>
<td>By Appointment</td>
<td>NYMT</td>
</tr>
<tr>
<td>May 7, 2006</td>
<td>Classroom</td>
<td>Experienced and New</td>
<td>9 to 10 AM</td>
<td>NYMT</td>
</tr>
<tr>
<td></td>
<td>Hands-on</td>
<td>Experienced A thru Z</td>
<td>9 to 12 AM</td>
<td>NYMT</td>
</tr>
<tr>
<td>May 13, 2006</td>
<td>Hands-on</td>
<td>New</td>
<td>By Appointment</td>
<td>NYMT</td>
</tr>
<tr>
<td>May 20, 2006</td>
<td>Hands-on</td>
<td>New</td>
<td>By Appointment</td>
<td>NYMT</td>
</tr>
<tr>
<td></td>
<td>Make up</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Editing Model Railroad Digital Images – Part III

by Fred Cupp

Way back in part 1, we saw the effect of the "Sharpen" function. I promised to show you the converse function, "Blur". You may not think it wise to blur your fine photo, but there are times that it may be necessary. Take the case of an historical railroad photo. If you zoom in to examine any details, such as the man standing on the track, the halftone dot printing pattern is very distracting. (See photo # 1) The first step to improve or reduce the dot interference pattern must average out the small variations in adjacent pixel areas. Careful use of the blur function, (adjusting the size of the area to average), can virtually eliminate the interference of the printing dots. (See photo # 2) Unfortunately, this also blurs the overall quality of the photo. Next, the sharpen function, (applied twice), is used the replace the sharpness somewhat, while leaving the dot pattern virtually eliminated. (See photo # 3)

Now I want to run in another clever tool, one that will not be used too often, but when it is needed, it is sheer magic. This tool will permit you to take two photographs and "STITCH" them together. In 1957, passenger service on the Pennsy Buffalo line was about to become extinct. I decided that I should preserve the image of the station serving the town of my birthplace. (As if anyone but me cared?) At the station, I discovered that when standing across the tracks from the station, I could only get a little more than 1/2 of the building in the picture. My old Century Graphic "Press Camera" with only one lens, prevented me from moving back. Rather than having no picture at all, I took two shots, to preserve this scene. Those 2-1/4” x 3-1/4” negatives went into the big storage box, and only emerged about 1999, re-appearing as images on my computer.

After conversion to positive images, a number of preparation steps were needed:

1.) Rotating the left image about 1 degree to maintain a straight roofline.
2.) Selecting a point to join the two together, (the left edge of the chimney).
3.) Adjusting the brightness slightly to the same value at both edges of the selected splice.
4.) Cropping the left photo to provide a sharp edge to overlap the right photo.
Now it is time to open the Stitch Dialog Box. At first it may seem intimidating, but take things one at a time. It will assume that one of the two photos will be to the left. If wrong, click on the "SWAP" icon, which should either show a right and left arrow, or may have the word "SWAP". Before you can splice the photos together, you must also set the edge transparency value to Zero ("0"). This will cause the left portion to cover the overlap on the right section. One other setting is to turn off the "Auto Trim" or "Auto adjust" depending on what program you may have.

Now the fun starts! Place the cursor on the left photo and hold the left mouse button down. You may now slide the left photo over the right and place it in position. When you let go, it will stay in place. It is a good idea, before to rush to save it, to click the magnifying glass icon to zoom in and carefully examine the splice area from top to bottom. If it is mis-alligned, simply pick it up and slide it to the correct position. Now, wasn't that easy and fun?

Left side of station photo, cropped. Right side of station photo, not cropped.

The finished, composite "bit of history", Jersey Shore Station.
We will conclude this series with a fun bit of image trickery. A friend, John Kocet, had just purchased a new steam loco and had it on my layout. He commented that it looked so good he was ready to climb up in the cab, if only he could. I then posed him on our back deck for the first shot in the row of three. Using a lasso tool is a pain! You will test your patience in using this. Carefully draw an outline, slightly oversize, around the subject. Now, zoom in really close and use the eraser tool to clean off the edges left by the lasso selection tool. Last, copy the isolated image portion and save it as a new blank photo. The third photo shows this cleaned up image.

One last step remains. -- By trial and error, resize the image and test it on the "cab" photo to check the size, relative to the cab window. Use the "UNDO" tool until the result is pleasing.

John Kocet, sitting proudly in the cab of his new HO loco!

Well, dear reader, this concludes our rapid tour through the wonderland of digital imaging. I trust that the trip has challenged you to apply your imagination to your own photo gallery. If I can be of assistance, you may send your comments or questions to: < fbcupp@verizon.net >.
Alan writes:

I just purchased a new DCC system, the NCE Power Pro Radio 5 Amp System, and have some questions. For example, how do I change the cab to “Yard Mode”? In looking in the NCE Power Pro System Reference Manual I cannot find this in the “Table of Contents” on page 5 or on the Programming Menus Table of Contents on page 39. Also, should I twist my bus wires?

I also have some questions about the radio system that are not in the Manual.

Can you help?

Doc:

Let me first say that “a certain amount of technical expertise is required” to understand and operate sophisticated DCC systems. To answer you specifically, “Yard Mode” is listed on Page 22 under Cab Set Up (# 5), twisted bus wires can be found on Page 10, and information on the radio system is not in the Manual but included in the NCE ProCab Wireless Supplement that should be included with your system.

To aid in answering your other concerns, see the following Index. Good luck.

NCE Power Pro System Reference Manual

February 2006 - # 05240300

Index*
ASCII Command Set 72
Accessory Decoders, Program 67
Add Loco, ProCab, Consist 20
Adding a Loco to an Advanced Consist 30
Address, ProCab 18
Address, Long 2, 27
Address, Short 2, 27
Address – Programming a Locomotive 1 – 2
Address Programming, Main, (Option 1) 41
Advance Consists, Setting Up 28
Assigning a Loco to a Cab 48

BIN CV 41
Backlight, LCD 22
Back Up Key 76
Basic Set Up 0
Battery, Cab (See Wireless Supplement)
Battery, Command Station 13
Battery, Connect Jumper 13
Binary Command Set 72
Bell, ProCab 19
Boosters, Multiple 16
Booster, Power 14 – 16
Brake Key 19
Browse Consists 70
Button Numbering Scheme 24
Buttons, Commonly Used, ProCab 19

Cab 05 R 80
Cab 04 P 80
Cab Bus 12
Cab Bus Cable 25
Cab Parameters, Set 65
Cab Set Up 22
Cable, Cab Bus, Wiring 25
Cable, Connectors 25
Cable, Straight Through 25
Changing the Lead/Rear Loco, Consist 31
Clear, ProCab, Consist 20
Clearing an Advanced Consist 31
Clock, Setting the System 38, 49
Command Station 12
Command Station, Set Up 38, 59
Common Rail Layouts 16
Communications Parameters 72
Computer Interface Port 12
Computer Interface, RS 232 72 - 75
Connectors, RJ – 12 25
Consist Address 29
Consist, Advanced 28
Consist, Old Style 28
Consist Set Up Group 20
Consists, Browse 70
Control Bus 12
Control Bus Sockets 15
Controlling Headlights/Other Decoder Functions 27
Copyright and Trademarks 78
Crossovers 10
Customer Service 4

CVs
CV Programming, Main, (Option 2) 42
CV Programming 56
CV 2 (start voltage) 54
CV 3 (acceleration) 54
CV 4 (deceleration) 55
CV 5 (maximum voltage) 54
CV 6 (mid speed voltage) 54
CV 9 (motor PWM frequency) 55
CV 19 77
CV 23 36
CV 24 36
CV 29 (CFG) 7, 83
CV 49 (QSI) 47
CV 50 (QSI) 47
CV 51 (QSI) 47
CV 52 (QSI) 47
CV 56 (QSI) 47
CV 62 36
CV 116 (NCE torque compensation kick rate) 55
CV 117 (NCE torque compensation kick depth) 55
CV 119 (Soundtraxx) 47
CV 120 – 127 (Soundtraxx) 47

DC, Analog Mode 53
DCC Output Voltage, Power Booster 15 - 16
DPDT Switch, Wiring 9
DPDT Switch, with EB3 81
Data Entry/Function Control 20
Deceleration (CV4) 55
Decoders, Installing 8
Decoders, Notes 9
Delete Loco, ProCab, Consist 21
Direction, ProCab 18
Display 26
Double Gapped Layouts 16
Dropping Loco From Advanced Consist 30

EB1, wiring 80
EB3, wiring 81
EPROM, replacement 13
EXPN 21
Emergency Stop, ProCab 19
Enter, ProCab 20
Error Message 51
Escape Key 21

F10 21
F11 21
F12 21
FCC Statement 79
Factory Default Values, “Shifted” Keys 25
Function, Control 20 - 21
Function Mapping 45, 56

Headlight, ProCab 19, 27
Hints, For Operation 76
Horn, ProCab 19
OPS Mode 38, 41
Option Keys 21
Option, ProCab 19
Operating Procedures, ProCab 26
Operations Mode Programming 41

Power Booster 14, 76
Power Supply P515 80 - 81
ProCab, NCE 18, 76, 81
Prog/Esc/F10 21
Program, What to 41
Program Track, Use 50, 77
Programming Procedures 38

Programming on the Main 41 – 47
 Option 1 - Address Programming 41
 Option 2 - CV Programming 42
 Option 3 - Set Decoder Configuration 42
 Option 4 - Set Motor Control Parameters 43
 Option 5 - Decoder Output/Function Mapping 45
 Option 6 - Set Up NCE Lighting Effects 46
 Option 7 - Soundtraxx Tsunami Programming 47
 Option 8 - QSI Programming 47
 Option 9 - Binary Programming 47

Programming on the Programming Track 38, 50 – 58
 Option 1 - Standard Programming 51
 Option 2 - Change Any CV in the Decoder 57
 Option 3 - Register Programming 57
 Option 4 - Paged Programming 58
 Option 5 - Direct Programming 58
 Option 6 - Set Up NCE Lighting Effects 58
 Option 7 - Recovery Programming 58

Programming Accessory Decoders 67
Programming & Extended Function Control 21
Programming Macros 68
Programming Modes 38
Programming Signal Decoders 71
Programming Track, General 9
Programming Track, Terminals 12

Quick Start, 5 Amp System 0
Quick Start, 10 Amp System 0
Quick Start, Completing 1
QSI Programming 47

UTP Panel 81

RJ – 12 Connectors 12, 25
RPT1 80, 81
RS 232 Serial Computer Interface 12, 72 – 75
Radio (See Wireless Supplement)
Radio Fix Enable 61
Radio Set Up Menu 21
Rear Loco Direction, Entering 25
Rear Loco Number, Entering 29
Recall, ProCab 2, 19
Reset, Cab 22
Reset, Command Station 59
Reset, Decoder 58
Register System 4
Reverse Loops 10
Reversing Modules 16

Select Accessory, ProCab 20
Select Loco, ProCab 20
Selecting Locomotive or Consist 26
Set Decoder Configuration, Main, (Option 3) 42
Set Up, 5 Amp System 0
Set Up, 10 Amp System 0
Set Up, Consist 20
Shift, ProCab, Programming & Ext. Function 21
Shifted Keys 25
Signal Decoders, Programming 70
Soundtraxx Programming 47
Speed Control, ProCab 18
Specifications, Command Station 12
Specifications, Five Amp Power Station 12
Specifications, Pro Cab 23
Start Voltage 54
Status Light, Booster 14
Status Light, Command Station 12
Straight Through Cable 25 (See Wireless Supplement)

28/128 21, 42
28 or 14 Speed Steps 42
Table of Contents, General 5
Table of Contents, Programming Menus 39
Terminals, Programming Track 12
Track Light 12
Track Terminals, Booster 14
Track Voltage Adjustment 15
Two Locos with One Cab 2
Trouble Shooting 77
Turnouts and Other Accessories 35
Twisted Bus Wires 10

Warranty 78
Whistle, ProCab 19
Wire Gauge 10
Wireless Information (See Wireless Supplement)
Wiring 10, 81
Wiring, Advanced Layout 81
Wiring, Decoders 7
Wiring, Cab Bus 25
Wiring, Track 9
Wyes 10

Yard vs. Normal Cab Setup 19, 22

* This Index may not be complete and is not authorized by NCE.
Future Articles
Planning for DCC
Modeling Keuka Lake - Hammondsport
Modeling a Civil War RR
Hiding that Basement Pole
Designing the Bath, NY Yards
Video Review – Photo Mural Backdrops
Tortoise Installation Made Easy
DCC Demystified
Building the Lakeview Winery

Coming Next Month ……
The Oregon View Model Railroad
A Station for Seigle Street
Touring the Floquil Paint Factory
The Steamboat Mary Ellen
Realistic Trees for N Scale
Train Events – 2006 Calendar

Rochester Model Rails
Editor and Publisher
Richard A. Senges
Web Master
Ted Larson
Photography
Matt Kovacic
Columnists
Leo Adamski
Gerald Brimacombe
Bill Carr
Fred Cupp
Jim Hutton
Betty James
George Irwin
Steve Levine
Jack Matsik
Lou Nost
Gary Patterson
Richard Roth
Harold W. Russell, MMR
Frank T. Smith
Gordon Spalty
Ned Spiller, MMR
David L. Thompson
Norm Wright

Authors: Articles, digital images, and plans are welcome.

Mailing Address
1231 Wellington Drive
Victor, NY 14564

Web Site:
www.trainweb.org/rmr

NOTICE: All articles published in the Rochester Model Rails are strictly the opinions of the authors and do not represent the opinion of the Rochester Model Rails management. The authors solely take full responsibility for their opinions, comments, drawings and images.

Don’t Forget to Visit
www.railroadmuseum.net
Coming Train Events for 2006

Updated 2 - 28 -2006

March 4
Hamilton, Canada - International Division, N.M.R.A. Narrow Gauge Meet, at Westdale United Church, 99 North, Oval, Hamilton, On. Clinics to be presented, “The Newfoundland Railroad” - Chris Abbot, “The Dolly Varden Railway” – Walter Reid, “Modelling in On30 gauge” – Chuck Faist and Larry Ife, and “Modelling The Maine 2-footers” – Trevor Marshall. Following the clinics there will be a layout tour of local narrow gauge layouts. Registration opens at 9:30 A.M. with the meet getting underway at 10:00 P.M. For more information contact Harvey McIntyre at hmcintyre4@cogeco.ca.

March 4
Cobourg, Canada - Cobourg Model Train Show Cobourg Lion Centere
Elgin St. east of Division St., Cobourg

March 11 – 12
Rochester, NY – Rochester Model Railroad Club Show, 150 South Clinton Avenue – First Universalist Church. Sat. 10:00am – 5:00pm. Sun. 1:00 – 5:00pm. *(Flea Market Sat. only,)* $3.00 adult, $2.00 age 6 – 12, under 6 free with adult. Info: Tom McColloch 585-872-6106

March 18 – 19
Kingston, Canada - Kingston Rail O Rama Model Train Show, New Location - Ambassador Hotel, 550 Princess St. Kingston CRHA Kingston Division

March 26
Rochester, NY – RIT Train Show and Sale, RIT campus. Info: www.ritmrc.org

March 26
Kitchener, Canada - Kitchener Model Train Show, Bingemans Park Ballroom
425 Bingemans Center Dr., Kitchener. Contact: Ian 519-426-8875

April 1 – 2
Lockport, NY - WNYRHS's Railroad Showcase 2006 Show, Saturday & Sunday, Kenan Arena, 195 Beattie Ave, Lockport, NY

April 2
Etobicoke, Canada - Lakeshore Model Railroaders Assoc. Model Railroad Flea Market Humber College, North Campus, Entrance D, 205 Humber College Blvd., Etobicoke Contact: Steve McCoy 416-656-4498

April 9
Batavia, NY – The Great Batavia Train Show, Batavia Downs Gaming, 9:30am – 3:30pm. Donation $5.00

April 22
Schomberg, Ontario, Canada – The First Annual Ontario Narrow Gauge Show, Schomberg Community Centre, 10:00am – 4:00pm. Website: www.creative-works.ca/NGM06Home

April 23
Woodstock, Canada - Woodstock Model Train Show, Oxford Auditorium, Woodstock Fairgrounds, West Ave., Woodstock. Contact: Ian 519-426-8875

April 28 – 30
Chatnam, Ontario, Canada – Chatham Express: The NFR 2005 Spring Convention Wheels Inn, 615 Richman Street. Info: 519-351-1100
Coming Train Events for 2006

Updated 2 - 28 - 2006

April 29 – 30 Brampton, Canada - The Great British Train Show, Jim Archdekin Recreation Center, 292 Conestoga Dr., Brampton. Contact: Mike Watts 905-683-0583

May 5 – 7 Medina, NY – Day Out with Thomas, Medina Railroad Museum, 8:00am – 6:00pm

May 6 – 7 Lindsay, Canada - Model Transportation Expo, Lindsay & District Model Railroaders Victoria Park Armory, 210 Kent St. W., Lindsay

May 12 – 14 Medina, NY – Day Out with Thomas, Medina Railroad Museum, 8:00am – 6:00pm

May 27 – 28 Midland, Canada - Midland District Model Railroad Club Model Railroad Show, Midland Sports & Recreation Complex, King St., Midland. Contact: Paul at okppmcd@msn.com

June 1 – 4 Worcester, MA – NMRA NER 2006 Spring Convention

July 1 – 2 Galeton, PA – Bark Peelers’ Convention, PA Lumber Museum

July 2 – 8 Philadelphia, PA – NMRA National Convention

August 12 – 13 Gananoque, Canada - Thousand Islands Model Railroad Show, Thousand Islands Model Railroaders, Gananoque Recreation Center, 600 King St. E. Contact: Bill 613-382-7575 or Rick 613-382-3244

August 21 – 26 Durango, CO - 26th National Narrow Gauge Convention

September 10 Buffalo, NY – Buffalo Central Terminal First Train Show. Info: www.buffalocentralterminal.org

Sept. 30 – Oct. 1 Brampton, Canada - Brampton Model Railroad Show, Orangeville Shortline Model Railroad Club, Brampton Fairgrounds 12942 410/Heartlake Rd., Brampton Contact: Dave 705-435-4986 or Carl 416-499-1498

October 20 – 22 Parsippany, NY – NMRA NER 2006 Fall Convention

November 4- 5 Syracuse NY - Train Show and Sale at NY Fairgrounds

November 12 Batavia, NY - The Great Batavia Train Show, Batavia Downs Gaming, 9:30am – 3:30pm. Donation $5.00

December 9-10 Rochester, NY – The New and Expanded Two Day RIT Train Show and Sale, Location – RIT Field House, many layouts displayed, largest train show in western NY.